



# Lessons learnt from IPTp with Mefloquine clinical trials in Benin, Gabon, Kenya, Mozambique and Tanzania

Raquel González, MD, MPH, PhD

Barcelona Institute for Global Health (ISGlobal)

East Africa Regional meeting 12<sup>th</sup> July 2016



EDCTP

# Background

- Increased SP resistance → evaluation of other antimalarials for IPTp needed
- Mefloquine (MQ) was considered a good alternative to be evaluated as IPTp
- Developed in the 1970's by the US army
- MQ belongs to the arylaminoalcohol antimalarials

#### Molecular weight: 378.3



# **Background**

- Comparative advantages of MQ for IPTp:
  - Long half life (12-17 days at prophylactic doses)
  - Can be given as single dose
  - Acceptable reprotoxicity profile in animal studies
  - Reclassified as pregnancy category B by the US-FDA
  - Recommended for chemoprophylaxis for pregnant women of all GA by the WHO and CDC
  - Well characterized in terms of PK in pregnancy
  - Resistance to MQ is rare in Africa
- Tolerability could be improved by splitting drug administration over 2 days (ter Kuile et al. 1995)

# **Background**

- HIV-infected pregnant women are an special vulnerable group for malaria
- SP is not recommended in women receiving daily cotrimoxazole (CTX) prophylaxis
- CTX has some antimalarial effect
- Evaluation of drugs to be used as IPTp in HIV-infected women receiving CTX is needed

→ MiPPAD (Malaria in Pregnancy Preventive Alternative Drugs) study that included two randomized controlled trials (RCT)



## MiPPAD Trial 1:

Safety and Efficacy of Mefloquine as Intermittent Preventive Treatment for malaria in Pregnancy: a randomized multicenter trial in HIV-negative women



# **IPTp- Mefloquine (MQ) RCT**

## OPEN & ACCESS Freely available online



# Intermittent Preventive Treatment of Malaria in Pregnancy with Mefloquine in HIV-Negative Women: A Multicentre Randomized Controlled Trial

Raquel González<sup>1,2,3</sup>, Ghyslain Mombo-Ngoma<sup>3,4,3</sup>, Smaïla Ouédraogo<sup>5,6,3</sup>, Mwaka A. Kakolwa<sup>7,3</sup>, Salim Abdulla<sup>7</sup>, Manfred Accrombessi<sup>5,6</sup>, John J. Aponte<sup>1,2</sup>, Daisy Akerey-Diop<sup>3,4</sup>, Arti Basra<sup>3,4</sup>, Valérie Briand<sup>6,8</sup>, Meskure Capan<sup>3,4</sup>, Michel Cot<sup>6,8</sup>, Abdunoor M. Kabanywanyi<sup>7</sup>, Christian Kleine<sup>3,4</sup>, Peter G. Kremsner<sup>3,4</sup>, Eusebio Macete<sup>2</sup>, Jean-Rodolphe Mackanga<sup>3,4</sup>, Achille Massougbodgi<sup>5</sup>, Alfredo Mayor<sup>1,2</sup>, Arsenio Nhacolo<sup>2</sup>, Golbahar Pahlavan<sup>1</sup>, Michael Ramharter<sup>3,4,9</sup>, María Rupérez<sup>1,2</sup>. Esperança Sevene<sup>2</sup>, Anifa Vala<sup>2</sup>, Rella Zoleko-Manego<sup>4,10</sup>, Clara Menéndez<sup>1,2,8</sup>





# **Objectives**

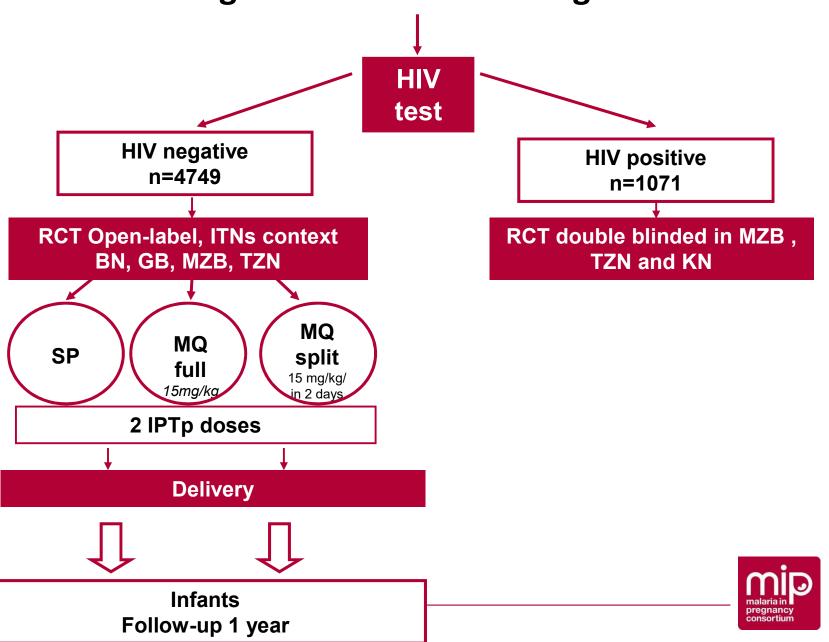
## **Primary:**

 To compare the safety, tolerability and efficacy of MQ to SP as IPTp for the prevention of malaria in pregnancy for the mother and her infant

## Secondary:

 To compare MQ tolerability given as full dose with a split dose administered over 2 days




# Study design

Randomized open-label 3 arms trial to compare 2-dose MQ versus **2-dose** SP for IPTp in the prevention of the adverse effects of malaria during pregnancy and to compare MQ tolerability of 2 different MQ administration regimens. Study arms:

- IPTp with SP
- IPTp with MQ given as full dose
- IPTp with MQ given as an split dose



## **Pregnant women attending ANC**



# **Efficacy results**

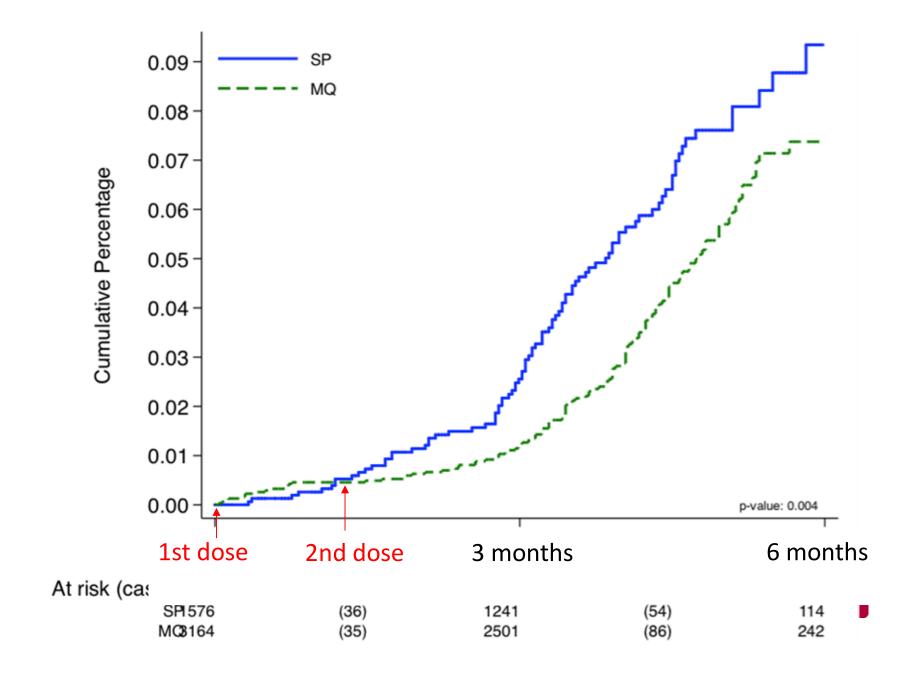
| Endpoint                                    | SP                | SP MQ  |                   |        | RR                | 95% CI         | p-value |
|---------------------------------------------|-------------------|--------|-------------------|--------|-------------------|----------------|---------|
|                                             | n/N               | %      | n/N               | %      |                   |                |         |
| Prevalence of LBW                           | 177/1398          | 12.7   | 360/2778          | 13.0   | 1.02              | (0.86 , 1.22)  | 0.801   |
| Benin                                       | 47/349            | 13.5   | 110/703           | 15.6   | 1.16              | (0.82 , 1.64)  | 0.391   |
| Gabon                                       | 54/331            | 16.3   | 112/652           | 17.2   | 1.05              | (0.77 , 1.44)  | 0.749   |
| Mozambique                                  | 37/360            | 10.3   | 66/712            | 9.3    | 0.90              | (0.60 , 1.36)  | 0.621   |
| Tanzania                                    | 39/358            | 10.9   | 72 /711           | 10.1   | 0.93              | (0.63 , 1.36)  | 0.709   |
| Mean birth weight, m (SD)                   | 3001.5 (51        | L7.8)  | 2997.4 (53        | 35.5)  | -4.1 <sup>1</sup> | (-39.2 , 31.1) | 0.821   |
| Maternal parasitemia at delivery (O.M.)     | 63/1372           | 4.6    | 88/2737           | 3.2    | 0.70              | (0.51 , 0.96)  | 0.026   |
| Maternal anemia at<br>delivery (Hb<11 g/dl) | 609/1380          | 44.1   | 1110/2743         | 40.5   | 0.92              | (0.85 , 0.99)  | 0.026   |
| Maternal Hb at delivery mean (SD)[n]        | <b>11.0</b> (1.6) | [1380] | <b>11.1</b> (1.5) | [2743] | 0.15 <sup>2</sup> | (0.05 , 0.25)  | 0.003   |

**ITT** cohort

<sup>1</sup>Proportional difference



# **Efficacy results**


| Endpoint                        | SP                                 | MQ                                  | RR   | 95% CI        | p-<br>value |
|---------------------------------|------------------------------------|-------------------------------------|------|---------------|-------------|
| Incidence of clinical malaria   | 96/552.8 <b>0.17</b> <sup>1</sup>  | 130/1106.1 <b>0.12</b> <sup>1</sup> | 0.67 | (0.52 , 0.88) | 0.004       |
| Incidence of outpatients visits | 850/558.8 <b>1.52</b> <sup>1</sup> | 1475/1113 <b>1.33</b> <sup>1</sup>  | 0.86 | (0.78 , 0.95) | 0.002       |
| Hospital<br>Admissions          | 106/558.8 0.19 <sup>1</sup>        | 186/1113.0 0.17 <sup>1</sup>        | 0.88 | (0.68 , 1.14) | 0.346       |

**ITT cohort** <sup>1</sup> Episodes person/year

**Definition of clinical malaria episode**: *P falciparum* parasitemia of any density plus any signs and/or symptoms suggestive of malaria: fever in the last 24 hours and/or axillary temperature ( $T^a \ge 37.5 \, ^{\circ}\text{C}$ ), and/or pallor and/or arthromyalgias and/or headache and/or history of convulsions.

## **ITT** cohort

# Time to first malaria episode



## Adverse events related to medication

| After 1st IPTp | SP (N=1559) |      |              | MQ full (N=1550) |       |                | MQ split (N=1562) |       |                |  |
|----------------|-------------|------|--------------|------------------|-------|----------------|-------------------|-------|----------------|--|
|                | n           | %    | 95%CI        | n                | %     | 95%CI          | n                 | %     | 95% CI         |  |
| Vomiting       | 100         | 6.41 | (5.25; 7.75) | 491              | 31.68 | (29.37; 34.06) | 471               | 30.15 | (27.88; 32.50) |  |
| Dizziness      | 115         | 7.38 | (6.13; 8.79) | 526              | 33.94 | (31.58; 36.35) | 554               | 35.47 | (32.90; 37.90) |  |
| Headache       | 115         | 7.38 | (6.13; 8.79) | 123              | 7.94  | (6.64; 9.39)   | 131               | 8.39  | (7.06; 9.87)   |  |
| Nausea         | 55          | 3.53 | (2.67; 4.57) | 136              | 8.77  | (7.41; 10.29)  | 152               | 9.73  | (8.31; 11.31)  |  |
| Asthenia       | 14          | 0.90 | (0.49; 1.50) | 107              | 6.90  | (5.69; 8.28)   | 104               | 6.66  | (5.47; 8.01)   |  |

#### **No differences** between groups on frequency of:

- Adverse pregnancy outcomes (miscarriages, stillbirths, congenital malformations, prematurity)
- SAFs
- Maternal and neonatal deaths



# **Summary of main findings**

- No differences in LBW prevalence between groups
- MQ group presented lower rates of
  - Maternal parasitemia at delivery
  - Maternal anemia at delivery
  - Incidence of clinical malaria during pregnancy
  - Incidence of outpatient clinic visits
- No differences in the frequency of adverse pregnancy outcomes (miscarriage, stillbirths, congenital malformations, maternal deaths)
- MQ group presented higher rates of drug related- Adverse Effects
  - Poorer immediate tolerability than the SP group
  - Higher frequency of vomiting and dizziness
- No differences in efficacy, frequency of adverse effects and drug tolerability between MQ full and MQ split groups

## **Conclusions**

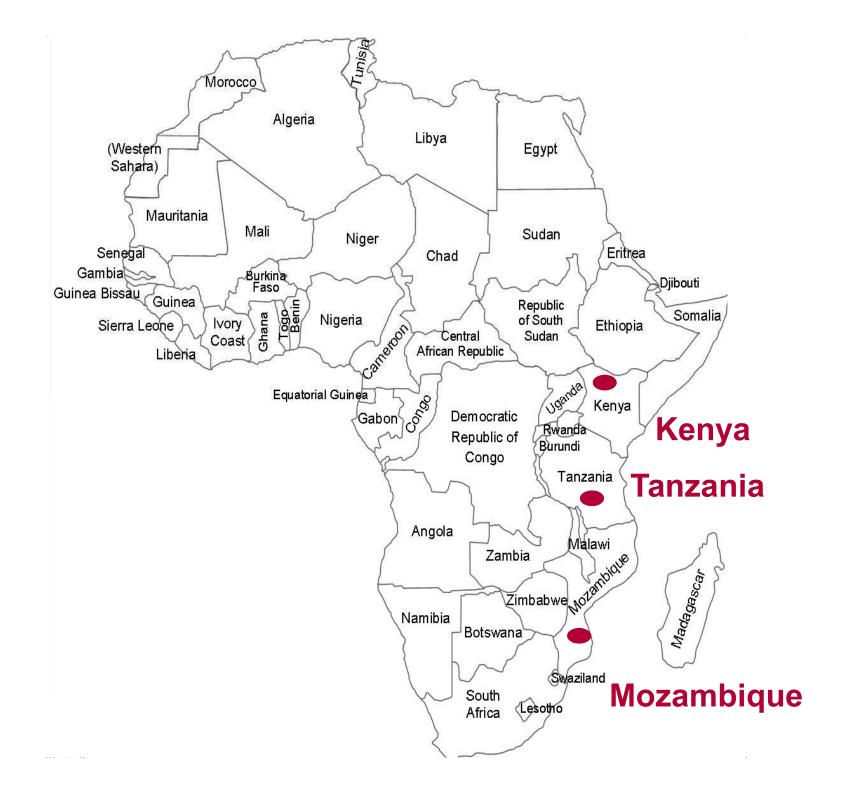
- MQ has a better prophylactic antimalarial effect than SP
- MQ is a **safe** drug in terms of adverse pregnancy outcomes
- MQ (15 mg/kg) has worse tolerability than SP as IPTp
- Splitting the MQ dose does not seem to confer benefits in terms of drug tolerability
- MQ at the dose used in this study is not an alternative to SP for IPTp

## **MiPPAD Trial 2:**

Mefloquine as Intermittent Preventive Treatment for malaria in Pregnancy in HIV-infected women receiving cotrimoxazole prophylaxis: a randomized double-blind multicenter placebo-controlled trial



# **IPTp- Mefloquine RCT**


## OPEN & ACCESS Freely available online



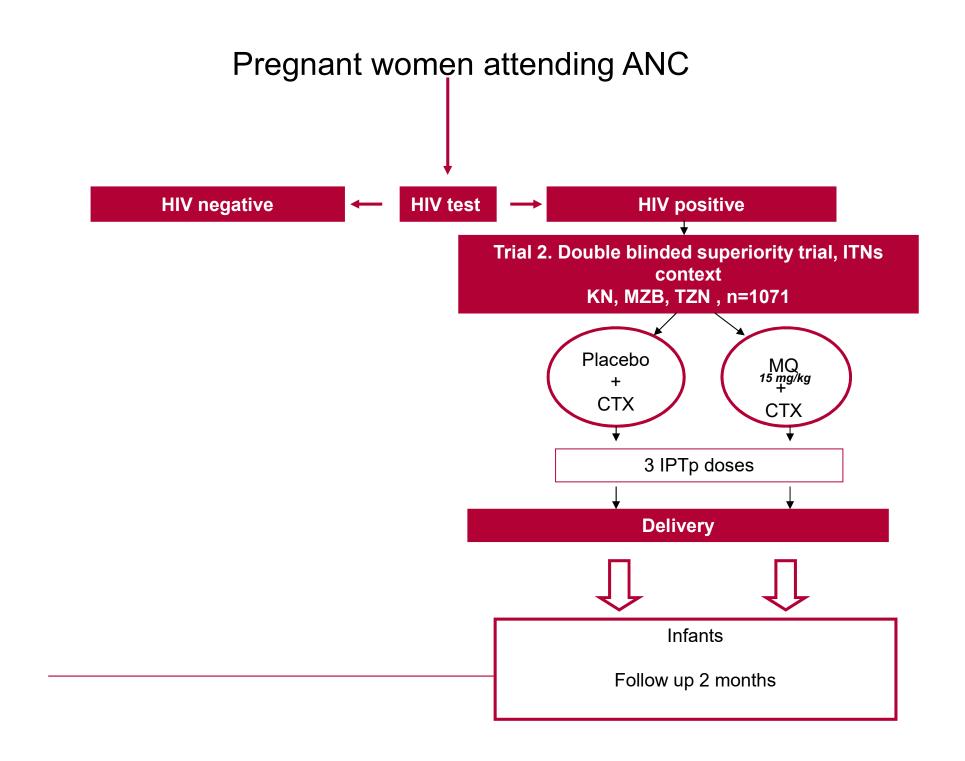
Intermittent Preventive Treatment of Malaria in Pregnancy with Mefloquine in HIV-Infected Women Receiving Cotrimoxazole Prophylaxis: A Multicenter Randomized Placebo-Controlled Trial

Raquel González<sup>1,2,3</sup>, Meghna Desai<sup>3,4,3</sup>, Eusebio Macete<sup>2,3</sup>, Peter Ouma<sup>3,5,3</sup>, Mwaka A. Kakolwa<sup>6,3</sup>, Salim Abdulla<sup>6</sup>, John J. Aponte<sup>1,2</sup>, Helder Bulo<sup>2</sup>, Abdunoor M. Kabanywanyi<sup>6</sup>, Abraham Katana<sup>3,5</sup>, Sonia Maculuve<sup>2</sup>, Alfredo Mayor<sup>1,2</sup>, Arsenio Nhacolo<sup>2</sup>, Kephas Otieno<sup>3,5</sup>, Golbahar Pahlavan<sup>1</sup>, María Rupérez<sup>1,2</sup>, Esperança Sevene<sup>2</sup>, Laurence Slutsker<sup>4</sup>, Anifa Vala<sup>2</sup>, John Williamsom<sup>3,4</sup>, Clara Menéndez<sup>1,2,4</sup>





# **Objective**


To evaluate the safety and efficacy of mefloquine (MQ) as intermittent preventive treatment for malaria in pregnancy (IPTp) in HIV-infected women taking daily CTXp and in the context of long lasting insecticide treated nets (LLITNs).



# Study design

Randomized double-blind clinical trial to compare the efficacy of MQ as IPTp with placebo-IPTp in HIV-infected pregnant women receiving CTX prophylaxis.





# **Efficacy**

| Endpoint                                               | Control |     | MQ     |     | RR   | 95% CI       | p-    |
|--------------------------------------------------------|---------|-----|--------|-----|------|--------------|-------|
|                                                        | n/N     | %   | n/N    | %   |      |              | value |
| Maternal <b>parasitemia</b> at delivery (smear or PCR) | 37/490  | 7.6 | 17/483 | 3.5 | 0.47 | (0.27; 0.82) | 0.008 |
| Placental infection<br>(Histology, smear or<br>PCR)    | 34/462  | 7.4 | 17/449 | 3.8 | 0.52 | (0.29; 0.90) | 0.021 |

## **ITT** cohort



# **Efficacy**

|                                     | Con<br>n/PYAR <sup>1</sup><br>Incidence | trol | Mefloq<br>n/PYAR <sup>1</sup><br>Incidence | luine | Relative<br>Rate | 95% CI          | p-<br>value |
|-------------------------------------|-----------------------------------------|------|--------------------------------------------|-------|------------------|-----------------|-------------|
| Clinical malaria                    | 16/189.1                                | 0.09 | 8/182.2                                    | 0.04  | 0.52             | (0.22;<br>1.21) | 0.128       |
| Outpatient visits                   | 401/190.2                               | 2.11 | 332/182.8                                  | 1.82  | 0.86             | (0.72;<br>1.03) | 0.098       |
| All-cause<br>hospital<br>admissions | 68/190.2                                | 0.36 | 41/182.8                                   | 0.22  | 0.65             | (0.41;<br>1.03) | 0.065       |
| Non-obstetric admissions            | 67/190.2                                | 0.35 | 37/182.8                                   | 0.20  | 0.59             | (0.37;<br>0.95) | 0.031       |

<sup>&</sup>lt;sup>1</sup> Episodes person/year. ITT analysis adjusted by country.



# **Safety**

| After 1st IPTp | n F | Placebo | o (N=531)<br>95%Cl | n   | MQ (I | N=520)<br>95%Cl   |  |
|----------------|-----|---------|--------------------|-----|-------|-------------------|--|
| Dizziness      | 40  | 7.5     | (5.43;<br>10.10)   | 155 | 29.6  | (25.75;<br>33.75) |  |
| Vomiting       | 16  | 3.0     | (1.73; 4.84)       | 125 | 23.9  | (20.31;<br>27.79) |  |
| Headache       | 40  | 7.5     | (5.43;<br>10.10)   | 38  | 7.3   | (5.19; 9.84)      |  |
| Nausea         | 21  | 4.0     | (2.46; 5.97)       | 54  | 10.3  | (7.85; 13.26)     |  |

## **No differences** between groups on frequency of:

- Adverse pregnancy outcomes (miscarriages, stillbirths, congenital malformations, prematurity)
- SAEs
- Maternal and neonatal deaths



# Mother to child transmission of HIV by treatment group (exploratory analysis)

| Infant HIV                    | Cor       | ntrol              | Mefl      | oquine      | Risk Ratio                  | p-value |
|-------------------------------|-----------|--------------------|-----------|-------------|-----------------------------|---------|
| PCR results <sup>1</sup>      | n         | %                  | n         | %           | (95%CI)                     |         |
| ITT [N=855] Positive Negative | 19<br>416 | <b>4.4</b><br>95.6 | 36<br>384 | 8.6<br>91.4 | <b>1.95</b><br>(1.12; 3.39) | 0.018   |
| ATP [N=754] Positive Negative | 15<br>378 | <b>3.8</b><br>96.2 | 29<br>332 | 8.0<br>92.0 | <b>2.04</b><br>(1.08; 3.85) | 0.028   |

<sup>1</sup>Median age 5.9 weeks (Interquartile Range 1.7). ITT analysis adjusted by country. ATP analysis adjusted by baseline variables: country, literacy, gestational age, gravidity, anemia, MUAC, CD4 counts and viral load. Interaction MQ x Country = p-value 0.642 for ITT cohort, and 0.860 for ATP cohort.



#### **Risk factors for MTCT of HIV**

|                                                            |               | ITT         |         |               | ATP         |         |
|------------------------------------------------------------|---------------|-------------|---------|---------------|-------------|---------|
|                                                            | Risk<br>Ratio | CI 95%      | p-value | Risk<br>Ratio | CI 95%      | p-value |
| Treatment  Mefloquine vs Control                           | 2.05          | 1.16; 3.63  | 0.014   | 2.17          | 1.12 ; 4.19 | 0.021   |
| Viral load at delivery (copies/mL)                         |               |             |         |               |             |         |
| 400-999 vs <400                                            | 4.80          | 1.38;16.65  | 0.013   | 3.32          | 0.88; 12.50 | 0.075   |
| 1000- 9999 vs < 400                                        | 3.59          | 1.39; 9.29  | 0.008   | 3.75          | 1.43; 9.87  | 0.007   |
| >9999 vs < 400                                             | 5.82          | 2.01; 16.84 | 0.001   | 3.62          | 1.14; 11.51 | 0.029   |
| No data vs < 400                                           | 2.78          | 0.80; 9.74  | 0.109   | 1.22          | 0.16; 9.20  | 0.847   |
| <b>Clinical malaria</b> episodes in pregnancy <sup>2</sup> | 3.05          | 1.35; 6.92  | 0.008   | 4.76          | 2.01; 11.24 | <0.001  |
| Maternal compliance to PMTCT or ART guidelines             |               |             |         |               |             |         |
| Incomplete <sup>3</sup> vs Complete <sup>4</sup>           | 1.94          | 1.06; 3.57  | 0.031   | 1.96          | 0.98; 3.92  | 0.056   |
| Nothing <sup>5</sup> vs Complete                           | 2.86          | 1.43; 5.74  | 0.003   | 3.01          | 1.22; 7.37  | 0.016   |

<sup>&</sup>lt;sup>1</sup>Median age of infants was 5.9 weeks (IQR 1.7) at the time of the HIV PCR test. Analysis adjusted by baseline variables: country, literacy, gestational age, gravidity, anemia, MUAC, CD4 counts and viral load. PMTCT: Prevention of Mother to Child Transmission. ART: Antiretroviral therapy. <sup>2</sup> At least one episode of clinical malaria during study follow-up in pregnancy. <sup>3</sup> Incomplete: received partially PMTCT (either antenatal, intrapartum or postpartum) or ART. <sup>4</sup> Complete: received PMTCT (antenatal, intrapartum, and postpartum) or ART according to national guidelines. <sup>5</sup> The mother did not receive either PMTCT or ART.

# **Summary of main findings**

- •In IPTp-MQ group, **reduced** rate of :
  - Maternal parasitemia at delivery
  - Placental infection
  - Hospital admissions
- No differences on frequency of adverse pregnancy outcome
- No maternal SAEs related to medication
- •In IPTp-MQ group, higher:
  - Frequency of vomiting and dizziness
  - HIV viral loads at delivery
  - Rates of MTCT of HIV



## **Conclusions**

- The **addition** of an **effective antimalarial** drug to daily **CTX** prophylaxis in **HIV-infected women** can have a benefitial effect by:
  - Halving the risk of maternal parasitemia at delivery
  - Reducing the incidence of hospital admissions
- Poor tolerability of MQ (15mg/kg)  $\rightarrow$  search for alternative antimalarials
- The increased MTCT of HIV calls for the need of specifically designed studies to fully understand the effects of antimalarials and ARVs coadministration
- There is an urgent need to address the prevention of malaria in <u>HIV-</u> <u>infected pregnant women</u> who are one of the most vulnerable group to the infection in malaria endemic areas in **Africa**



# **MiPPAD** investigators

#### ISGlobal, Barcelona, Spain

- •John J. Aponte
- •Raquel González
- Alfredo Mayor
- Clara Menéndez

#### CDC, Atlanta, USA

- •Meghna Desai
- Laurence Slutsker
- John Williamson

#### FSS, Cotonou, Benin

- Manfred Accrombessi
- Achille Massougbodji
- •Smaïla Ouédragou

#### IHI, Dodoma, Tanzania

- •Salim Abdulla
- •Mwaka A. Kakolwa
- •Abdunoor M. Kabanywanyi

#### IRD, Paris, France

- •Valérie Briand
- Michel Cot

#### MRU, Lambaréné, Gabon

- •Jean Rodolphe Mackanga
- •Ghyslain Mombo-Ngoma
- •Rella M Zoleko

#### KEMRI, Kisumu, Kenya

- Peter Ouma
- Kephas Otieno
- Abraham Katana

#### **UoTübingen, Tübingen, Germany**

- •Peter G. Kremsner
- Michael Ramharter

#### CISM, Manhiça, Mozambique

- •Eusébio V. Macete
- Arsénio Nhacolo
- •María Rupérez
- •Esperança Sevene
- •Anifa Valá



## **Acknowledgements**



All study participants, nurses and field workers.

#### **DSMB**

- Xavier Carné
- Ogobara Doumbo
- Safiatou Niare
- Harald Noedl
- Jean-Yves Mary

#### Safety Monitoring Team

- Anna Llupià
- Laia Sánchez
- Alberto L. García-Basteiro
- Sergi Sanz

#### Trial management team, ISGlobal

- Golbahar Pahlavan
- Daniel Iñiguez
- Montserrat Pi



#### Hospital Clínic de Barcelona

- Elena del Cacho
- Carles Codina
- Jaume Ordi
- Mercè Bosch



## Thank you!



MiPPAD Fifth Investigator's meeting, Barcelona, November 2014